323. Number of Connected Components in an Undirected Graph
Last updated
Last updated
time: O(edges*nodes)
space: O(n)
similar to 261
only change this part
if (x != y) {
roots[x] = y;
res--; // final result
}
and the key idea is
graph numbers = nodes - edges
class Solution {
public int countComponents(int n, int[][] edges) {
// no edge case condition, no edges.length != n - 1 case
// graph numbers = nodes - edges
int res = n;
int roots[] = new int[n];
for (int i = 0; i < n ; i++) {
roots[i] = -1;
}
for (int pair[] : edges) {
int x = find(roots, pair[0]);
int y = find(roots, pair[1]);
if (x != y) {
roots[x] = y;
res--;
}
}
return res;
}
private int find(int roots[], int i) {
while (roots[i] != -1) {
i = roots[i];
}
return i;
}
}
time: O(m+n), m is edge size(m*2), n is num of node, loop to do bfs
space: O(n)
class Solution {
public int countComponents(int n, int[][] edges) {
List<Integer>[] graph = new List[n]; // edges to graph
boolean[] visited = new boolean[n];
for (int i = 0 ; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] edge : edges) {
graph[edge[0]].add(edge[1]); // ็กๅๅ, ๅฟ
้ ๅ้ๅ
graph[edge[1]].add(edge[0]);
}
int count = 0;
for (int i = 0 ; i < n; i++) {
if (!visited[i]) {
visited[i] = true;
bfs(graph, i, visited);
count++;
}
}
return count;
}
private void bfs(List<Integer>[] graph, int i, boolean[] visited) {
Queue<Integer> queue = new ArrayDeque<>();
queue.offer(i);
while (!queue.isEmpty()) {
int node = queue.poll();
for (int others : graph[node]) {
if (!visited[others]) { // these are all connected with node's node, so only check is it connected before
queue.offer(others);
visited[others] = true;
}
}
}
}
}