MST - Kruskal's Algo
basically use union find
class Solution {
class Edge {
int x;
int y;
int w;
Edge(int x, int y, int w) {
this.x = x;
this.y = y;
this.w = w;
}
}
public int minCostConnectPoints(int[][] points) {
int n = points.length;
List<Edge> edges = new ArrayList<>();
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
edges.add(new Edge(i, j, Math.abs(points[i][0] - points[j][0]) + Math.abs(points[i][1] - points[j][1])));
}
}
Collections.sort(edges, (a, b) -> a.w - b.w);
int result = 0;
UnionFind uf = new UnionFind(n);
for (Edge e : edges) {
if (!uf.union(e.x, e.y)) {
continue;
}
result += e.w;
}
return result;
}
class UnionFind {
int[] parent;
UnionFind(int n) {
this.parent = new int[n];
for (int i = 0; i < n; i++) {
this.parent[i] = i;
}
}
public boolean union(int i, int j) {
int x = find(i);
int y = find(j);
if (x != y) {
parent[x] = y;
return true;
}
return false;
}
private int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
}
}
Previous1584. Min Cost to Connect All PointsNext1489. Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree
Last updated