class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
Integer[][] memo = new Integer[triangle.size()][triangle.size()]; // use Integer object!
return divideAndConquer(triangle, 0, 0, memo);
}
private int divideAndConquer(List<List<Integer>> triangle, int x, int y, Integer[][] memo) {
if (x == triangle.size()) { // reach last row
return 0; // return no further ans
}
if (memo[x][y] != null) {
return memo[x][y]; // if has cache, directly return it.
}
// do divide and conquer in two kinds of movement
int move1 = divideAndConquer(triangle, x+1, y, memo); // next row, index y
int move2 = divideAndConquer(triangle, x+1, y+1, memo); // next row, index y+1
memo[x][y] = Math.min(move1, move2) + triangle.get(x).get(y); // do cache
return memo[x][y];
}
}
// row index: i
// next row, index i or i+1
/*
[2],
[3,4],
[6,5,7],
[4,1,8,3]
*/
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
int dp[][] = new int[n+1][n+1];
for (int i = n-1; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
dp[i][j] = Math.min(dp[i+1][j] , dp[i+1][j+1]) + triangle.get(i).get(j);
}
}
return dp[0][0];
}
}
from bottom to calculate !
time: O(n^2)
space: O(n)
這裡其實改成只用1d 就達成, 因為不用開到 2d 就可以把結果算出來 (可以參考上面連結)
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
// i: j
// i+1: j, j+1 => select min value
// (2+9) = 11
// (3+6) (4+6)
// (6+1) (5+1) (7+3)
// 4 1 8 3 .from bottom
int dp[] = new int[triangle.size() + 1];
for (int i = triangle.size() - 1; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
dp[j] = Math.min(dp[j], dp[j+1]) + triangle.get(i).get(j);
}
}
return dp[0];
}
}