1610. Maximum Number of Visible Points
can refer this:
T: O(nlogn), n is length of points
S: O(n)
class Solution {
public int visiblePoints(List<List<Integer>> points, int angle, List<Integer> location) {
List<Double> angles = new ArrayList<>();
int same = 0;
for (List<Integer> point : points) {
// ่ขซ่งๅฏ็้ป x, y - ็็ๅฐๆน็ๅบงๆจ
int dx = point.get(0) - location.get(0);
int dy = point.get(1) - location.get(1);
// ๆไบ้ปๅฏ่ฝๆฏ้ๅ็, ไปฃ่กจ ไธ็ฎกไป้บผ่งๅบฆ ้ฝ็ๅพๅฐ้ไบ้ป
// ๆไปฅๅฎ็จ่จ็ฎ, ๆๅพๅ ๅฐ็ตๆ
if (dx == 0 && dy == 0) {
same++;
} else {
// ๅพๅฐๅ้ป, ๅ่ท้ข็่งๅบฆ
double degree = Math.atan2(dy, dx)*(180/Math.PI);
angles.add(degree);
}
}
// ๆๅบไธไธ
Collections.sort(angles);
// for circular ่็, ๅ ็บๅจๅฐพ็ซฏ sliding window ๅฏ่ฝ่็ไธๅฐ, ๆไปฅ้่ฆ
// n ่จๅพ่ฆๆๅบไพ, ไธ็ถๆ่ท่่ฎๅคง...ๅ ็บๅๅ ่ณๆ
int n = angles.size();
for (int i = 0; i < n; i++) {
angles.add(angles.get(i)+360); // append ไธๆจฃ็ degree ไฝ้ฝๅคๅฎถ 360
}
// sliding window
int res = 0;
int right = 0;
for (int left = 0; left < angles.size(); left++) {
while (right < angles.size() && angles.get(right) - angles.get(left) <= angle) {
right++;
}
res = Math.max(res, right - left);
}
return res + same;
}
}
/*
ex:
left
right
[10,20, 29]
angle = 30
cal each point dx. dy (points to location's dist)
use dx. dy get angles list (degree = Math.atan2(dy, dx)*(180/Math.PI))
sort angles list
handle circular issue: for i = 0~n, append each angles with +360 degree
then do the sliding window, window size = angle
T: O(nlogn), n is length of points
S: O(n)
*/
้ๆจฃไนๅฏไปฅ
int res = 0;
int left = 0;
for (int right = 0; right < angles.size(); right++) {
if (left < angles.size() && angles.get(right) - angles.get(left) > angle) {
left++;
}
// ๅ ็บๆฑๆๅคง, ๆไปฅไธ็จ็นๅฅ้ๅถ
res = Math.max(res, right - left + 1);
}
more explain
class Solution {
public int visiblePoints(List<List<Integer>> points, int angle, List<Integer> location) {
List<Double> angles = new ArrayList<>();
int sameCount = 0;
for (List<Integer> point : points) {
int dx = point.get(0) - location.get(0);
int dy = point.get(1) - location.get(1);
if (dx == 0 && dy == 0) {
sameCount++;
} else {
double degree = Math.atan2(dy, dx)*(180/Math.PI);
angles.add(degree);
}
}
Collections.sort(angles);
int n = angles.size();
for (int i = 0 ; i < n; i++) {
angles.add(angles.get(i)+360);
}
n = angles.size();
int left = 0;
int max = 0;
for (int right = 0; right < n; right++) {
if (left < n && angles.get(right) - angles.get(left) > angle) {
left++;
}
max = Math.max(max, right - left + 1);
}
return max + sameCount;
}
}
/*
question:
fix position (location)
Your field of view in degrees : rotate by angle
There can be multiple points at one coordinate.
count same:
There may be points at your location, and you can always see these points regardless of your rotation
Return the maximum number of points you can see.
idea:
1.
base on the east
cal the point's degree from east
for example 0,1 => 90 degree,
how to cal degree? use Math.atan2(dy, dx)*(180/Math.PI)
dy, dx is the dist: dx: pointsX - locationX, dy: pointsY - locationY
so we'll have a list of degree, [359, 20, 100, 40]
2.
we can sort it, then do the sliding window(assume is angle = 30)
sort: [20, 40, 100, 359], T: O(nlogn)
but like [20, 359], it's really closed, if sliding window is 30, we can't cover [20, 359] this circular part
so handle the circular issue, append the same data with more 360 degree
[20, 40, 100, 359] + [20+360, 40+360, 100+360, 359+360]
=> [20, 40, 100, 359, 380, 400, 460, 719], angle = 30
3.
do sliding window, count "the max number"
4.
but there is one more edge case:
There may be points at your location, and you can always see these points regardless of your rotation
so if dist: dx == 0, dy == 0 , means what ever you rotate, always can see these points
=> count same number
in conclusion:
ans: "the max number" + "same number"
3
0 1 2 right
[10, 15, 20, 30]
[ 20 ]
3. 1. = 2 so need add 1
T: O(nlogn)
S: O(n)
*/
Previous2134. Minimum Swaps to Group All 1's Together IINext76. Minimum Window Substring (sliding window)
Last updated