516. Longest Palindromic Subsequence
TC: O(n^2)
SC: O(n^2)class Solution {
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
}
for (int i = n-1; i >= 0; i--) {
for (int j = i+1; j < n; j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i+1][j-1] + 2;
} else {
dp[i][j] = Math.max(dp[i][j-1], dp[i+1][j]);
}
}
}
return dp[0][n-1];
}
}
/*
Longest Palindromic Subsequence
dp[i][j]: Longest Palindromic Subsequence for s[i:j]
i xxxxxx j
if (s[i] == s[j])
dp[i][j] = dp[i+1][j-1] + 2
else
dp[i][j] = max(dp[i][j-1], dp[i+1][j])
s[i] != s[j] so we can't have i, j at the same time
[ ]
i xxxxxx j
[ ]
base case, if i == j , value is 1 (only one character)
if (i < j ) value is all 0
[i, j-1] [i,j]
[i+1, j-1] [i+1, j]
j
-> ->
1 x. x ^
i 0 1 x |
0 0 1 for right buttom to exe
TC: O(n^2)
SC: O(n^2)
*/DFS + MEMO
Last updated
Was this helpful?