140. Word Break II (backtracking)
Latest:
Time complexity: O(2^n)
The algorithm explores all possible ways to break the string into words.
In the worst case, where each character can be treated as a word, the recursion tree has 2^n
leaf nodes, resulting in an exponential time complexity.
Space complexity: O(2^n)
class Solution {
public List<String> wordBreak(String s, List<String> wordDict) {
Set<String> wordSet = new HashSet<>();
for (String w : wordDict) {
wordSet.add(w);
}
List<List<String>> result = new ArrayList<>();
backtracking(0, s, wordSet, new ArrayList<>(), result);
List<String> res = new ArrayList<>();
for (List<String> list : result) {
StringBuilder sb = new StringBuilder();
for (String str : list) {
sb.append(str).append(" ");
}
sb.deleteCharAt(sb.length()-1);
res.add(sb.toString());
}
return res;
}
private void backtracking(int start, String s, Set<String> wordSet, List<String> list, List<List<String>> result) {
if (start == s.length()) {
result.add(new ArrayList<>(list));
}
for (int i = start; i < s.length(); i++) {
String substr = s.substring(start, i+1);
if (wordSet.contains(substr)) {
list.add(substr);
backtracking(i+1, s, wordSet, list, result);
System.out.println(list);
list.remove(list.size()-1);
}
}
}
}
/***
Time complexity: O(2^n)
The algorithm explores all possible ways to break the string into words.
In the worst case, where each character can be treated as a word, the recursion tree has 2^n
leaf nodes, resulting in an exponential time complexity.
Space complexity: O(2^n)
catsanddog
i == s.length
catsand
/\
cat cats
/. \
sand and
catsand = cat + f(3,xx) = cat + sand
= cats + f(4, xx) = cats + and
start dfs on i index(0 1 2 is cat), pass dfs(i+1) = dfs(3) to next dfs
[cat, sand, dog] -> execute dfs() to end
list.remove(list.size()-1); // bactracking
[cat, sand]
list.remove(list.size()-1);
[cat]
list.remove(list.size()-1);
[]
backtrack to original i index(3), start to run again..
then find cats (index = 0 1 2 3) is ok, so pass dfs(i+1) = dfs(4) to next dfs
[cats, and, dog] -> execute dfs() to end
list.remove(list.size()-1);
[cats, and]
list.remove(list.size()-1);
[cats]
list.remove(list.size()-1);
[]
*/
O(2^N * MN)
class Solution {
public List<String> wordBreak(String s, List<String> wordDict) {
List<String> result = new ArrayList<>();
dfs(s, wordDict, 0, new ArrayList<>(), result);
return result;
}
private void dfs(String s, List<String> wordDict, int start, List<String> track, List<String> result) {
if (start == s.length()) {
result.add(String.join(" ", track));
return;
}
for (String w : wordDict) {
int len = w.length();
if (start + len > s.length()) {
continue;
}
String prefix = s.substring(start, start + len);
if (w.equals(prefix)) {
track.add(w);
dfs(s, wordDict, start + len, track, result);
track.remove(track.size()-1);
}
}
}
}
/*
catsanddog
wordDict = ["cat","cats","and","sand","dog"]
["cats and dog","cat sand dog"]
loop
wordDict = ["cat","cats","and","sand","dog"]
try to find the prefix in this s catsanddog
cat
cat sanddog
---
prefix: cat into a list -> choose to add list
2. hanlder remain string
sanddog
in same way -> so dfs()
3. backtracking
cancel this add list
prefix: cats into a list -> choose to add list
cats anddog
remain string -> anddog
at last find all words can compose the string s
base case: s.length() == start (start index is used to find prefix)
start build a string with space "cats and dog", and add to result
*/
use dfs + memo
time compexity is O(n^4... almost like backtracking
class Solution {
public List<String> wordBreak(String s, List<String> wordDict) {
return dfs(s, 0, new HashSet<>(wordDict), new ArrayList[s.length()]);
}
private List<String> dfs(String s, int start, Set<String> dict, List<String>[] memo) {
List<String> result = new ArrayList<>();
if (s.length() == start) {
result.add("");
return result;
}
if (memo[start] != null) {
return memo[start];
}
for (int i = start + 1; i <= s.length(); i++) {
String sub = s.substring(start, i);
if (dict.contains(sub)) {
List<String> list = dfs(s, i, dict, memo);
for (String next : list) {
if (next.isEmpty()) {
result.add(sub);
} else {
result.add(sub + " " + next);
}
}
}
}
return memo[start] = result;
}
}
Last updated